Search results for "GLASS CONDENSATE"
showing 10 items of 65 documents
Structure of longitudinal chromomagnetic fields in high energy collisions
2014
We compute expectation values of spatial Wilson loops in the forward light cone of high-energy collisions. We consider ensembles of gauge field configurations generated from a classical Gaussian effective action as well as solutions of high-energy renormalization group evolution with fixed and running coupling. The initial fields correspond to a color field condensate exhibiting domain-like structure over distance scales of order the saturation scale. At later times universal scaling emerges at large distances for all ensembles, with a nontrivial critical exponent. Finally, we compare the results for the Wilson loop to the two-point correlator of magnetic fields.
Forward dijets in proton-nucleus collisions at next-to-leading order: the real corrections
2021
Using the CGC effective theory together with the hybrid factorisation, we study forward dijet production in proton-nucleus collisions beyond leading order. In this paper, we compute the "real" next-to-leading order (NLO) corrections, i.e. the radiative corrections associated with a three-parton final state, out of which only two are being measured. To that aim, we start by revisiting our previous results for the three-parton cross-section presented in our previous paper. After some reshuffling of terms, we deduce new expressions for these results, which not only look considerably simpler, but are also physically more transparent. We also correct several errors in this process. The real NLO …
Evolution of fluctuations in the initial state of heavy-ion collisions from RHIC to LHC
2019
Fluctuations in the initial state of heavy-ion collisions are larger at RHIC energy than at LHC energy. This fact can be inferred from recent measurements of the fluctuations of the particle multiplicities and of elliptic flow performed at the two different energies. We show that an analytical description of the initial energy-density field and its fluctuations motivated by the color glass condensate (CGC) effective theory predicts and quantitatively captures the measured energy evolution of these observables. The crucial feature is that fluctuations in the CGC scale like the inverse of the saturation scale of the nuclei.
Multiplicity distributions and long range rapidity correlations
2010
The physics of the initial conditions of heavy ion collisions is dominated by the nonlinear gluonic interactions of QCD. These lead to the concepts of parton saturation and the Color Glass Condensate (CGC). We discuss recent progress in calculating multi-gluon correlations in this framework, prompted by the observation that these correlations are in fact easier to compute in a dense system (nucleus-nucleus) than a dilute one (proton-proton).
Centrality-dependent forward J/ψ production in high energy proton-nucleus collisions
2016
Forward $J/\psi$ production and suppression in high energy proton-nucleus collisions can be an important probe of gluon saturation. In an earlier work we studied this process in the Color Glass Condensate framework and showed that using the Glauber approach to extrapolate the dipole cross section of a proton to a nucleus leads to results closer to experimental data than previous calculations in this framework. Here we investigate the centrality dependence of the nuclear suppression in this model and show a comparison of our results with recent LHC data.
The ridge in proton-proton collisions at the LHC
2010
We show that the key features of the CMS result on the ridge correlation seen for high multiplicity events in sqrt(s)=7TeV proton-proton collisions at the LHC can be understood in the Color Glass Condensate framework of high energy QCD. The same formalism underlies the explanation of the ridge events seen in A+A collisions at RHIC, albeit it is likely that flow effects may enhance the magnitude of the signal in the latter.
Use of a running coupling in the NLO calculation of forward hadron production
2018
We address and solve a puzzle raised by a recent calculation [1] of the cross-section for particle production in proton-nucleus collisions to next-to-leading order: the numerical results show an un- reasonably large dependence upon the choice of a prescription for the QCD running coupling, which spoils the predictive power of the calculation. Specifically, the results obtained with a prescription formulated in the transverse coordinate space differ by one to two orders of magnitude from those obtained with a prescription in momentum space. We show that this discrepancy is an artefact of the interplay between the asymptotic freedom of QCD and the Fourier transform from coordinate space to mo…
Freeze-out radii extracted from three-pion cumulants in pp, p–Pb and Pb–Pb collisions at the LHC
2014
In high-energy collisions, the spatio-temporal size of the particle production region can be measured using the Bose-Einstein correlations of identical bosons at low relative momentum. The source radii are typically extracted using two-pion correlations, and characterize the system at the last stage of interaction, called kinetic freeze-out. In low-multiplicity collisions, unlike in high-multiplicity collisions, two-pion correlations are substantially altered by background correlations, e.g. mini-jets. Such correlations can be suppressed using three-pion cumulant correlations. We present the first measurements of the size of the system at freeze-out extracted from three-pion cumulant correl…
Nuclear modification of forward J/ψ production in proton-nucleus collisions at the LHC
2016
We re-evaluate the nuclear suppression of forward J/ψ production at high energy in the Color Glass Condensate framework. We use the collinear approximation for the projectile proton probed at large x and an up to date dipole cross section fitted to HERA data to describe the target in proton-proton collisions. We show that using the Glauber approach to generalize the proton dipole cross section to the case of a nucleus target leads to a nuclear modification factor much closer to LHC data than previous estimates using the same framework.
Single inclusive particle production at high energy from HERA data to proton-nucleus collisions
2013
We study single inclusive hadron production in proton-proton and proton-nucleus collisions in the CGC framework. The parameters in the calculation are determined solely by standard nuclear geometry and by electron-proton deep inelastic scattering data, which is fit using the running coupling BK equation. We show that it is possible to obtain a good fit of the HERA inclusive cross section also without an anomalous dimension in the initial condition. We argue that one must consistently use the proton transverse area as measured by a high virtuality probe in DIS also for the single inclusive cross section in proton-proton and proton-nucleus collisions. We show that this leads to a midrapidity …